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The authors present results of experimental investigations of deformations of rocks that occur in non-
stationary filtration of a liquid in thin deep-lying cracked-porous strata. Equations for description of
lateral displacements and deformations that satisfactorily describe the data of the experiments are
obtained.

Introduction. The problem of monitoring of filtration flows is pressing for the petroleum industry at
present. Different geophysical and hydrodynamic methods are employed for its solution. Among other meth-
ods, of interest are those that are based on investigating the deformations of rocks occurring in the process of
filtration (see, for example, [13]). A certain advantage of such methods over hydrodynamic ones is that sen-
sors, recording displacements or deformations, can be located at any points of the earth’s surface and not be
"tied" to wells that receive hydrodynamic disturbances of pressure, which considerably extends the capabili-
ties of monitoring flows of liquids in strata. In this work, we consider the issues of description of deforma-
tions of rocks occurring in periodic regimes of filtration of liquids.

Description of the Experiment. Experimental investigations of deformations of rocks occurring in the
process of filtration were carried out by S. P. Evtushenko on a section of the Romashkino deposit with a
cracked-porous collector lying at a depth of about 700 m with a thickness of a stratum of D10–15 m and a
permeability of D10−12 m2. It was assumed that in cracked-porous strata, strong deformations would occur
due to the fact that the compressibility of such media is much higher than that of merely porous media. The
investigations carried out by the method of filtration harmonic pressure waves showed that the piezoconduc-
tivity in interwell intervals varied within 0.5–1.5 m2/sec; the pressure drops in the regimes injection–outflow
attained 6 MPa.

Observation of the deformations was carried out by measuring the relative displacement of two points
located on one vertical near the earth’s surface. For this purpose, one drilled a 7.5-m-deep pit at whose bot-
tom the lower end of a 5-m-long rod vertically installed in the pit was cemented; the lower plate of a sensor
was fixed on the free end of the rod. The upper plate of the capacitance sensor with a circuit was fixed on
a cement base at a depth of 2.5 m. Thus, the working base of the device was 5 m. The frequency of the
resonance circuit changed with change in the relative distance between the plates of the sensors, which was
recorded by a frequency meter. Two measuring devices were arranged at distances of 75 m (device 1) and
150 m (device 2) in different directions from a well that prescribed pressure disturbances in the stratum.

As a result of prescribing variable discharges on this well in regimes of the form injection–outflow
and injection–downtime with periods of 57,600, 86,400, 129,600, and 172,800 sec, the pressure in the stratum
changed, which in principle must lead to periodic deformations of rocks and to the displacements of the
earth’s surface. And indeed, such deformations were observed, and very clearly for relatively long (more than
105 sec) periods of oscillations of the discharges of the disturbing well since the long periods of pressure
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oscillations correspond to large amplitudes of change of the pressures in the stratum. The oscillations of the
discharges with each individual period were realized in the form of series of 3–6 successive repetitions of
discharge oscillations with this period.

Thus, Fig. 1 presents the dynamics of readings of the sensors in frequencies when pressure periods of
the same duration are assigned on the disturbing well. It is seen that all curves repeat their maxima and
minima, which indicates an identical, at least in terms of quality, reaction of the system under study to non-
stationary disturbances. So, in what manner can we describe deformations occurring in rocks?

Lateral Deformations of Rocks Caused by Filtration. Let us consider a fluid-saturated stratum of
thickness h that lies at a depth H. We assume that the stratum is drilled by a single well through which the
motion of the fluid is executed. Then we will assume everywhere that the condition h << H is fulfilled, which
is usually observed in practice. Subsequently, in order to determine deformations in the stratum, we will fol-
low the procedure of [2–4].

By virtue of the axial symmetry of the problem we adopt a cylindrical coordinate system; the x axis
coincides with the axis of the well, while the plane z = H is perpendicular to the force of gravity and is a
free surface. The plane z = 0 coincides with the middle plane of the stratum. The stratum is considered to be
homogeneous, and the motion of the liquid is considered to be axisymmetric. We assume that the rock is
characterized by the averaged Poisson coefficient σ and Young modulus E, while the characteristic of the
stratum is the rigidity of lateral deformations Estr

 ⁄ h.
Solution of the problem of the displacements of a free surface and deformations is reduced to finding

the displacement vector u of the medium. The quantity u satisfies an equation of the following form:

 grad (div u) − 
1 − 2σ

2 (1 − σ)
 rot (rot u) = 0 . (1)

Boundary conditions for this equation are written in the form [2]

σz = τrz = 0   (z = H) ,   ∆σz = ∆τrz = ∆ur = 0 ,   ∆uz = (σz + p (r, t)) h ⁄ Estr   (z = h ⁄ 2 C 0) , (2)

where ∆ denotes the difference (jump) of the corresponding quantity at the boundary rock–stratum and p(r, t)
is the pressure in the stratum, which is determined from the filtration equation. We note that the condition z
= h ⁄ 2 C 0 for ∆uz is appropriate in the case where h << H.

All the quantities in (2) can be calculated accurately by using the Papkovich–Naiber representation
for the components of the stress tensor and the vector u in terms of the harmonic functions Φ and ϕ in the
form of Hankel integrals [3, 4]:

Fig. 1. Recording (carried out by two devices) of signals induced by de-
formations of the stratum in the process of filtration in the case of suc-
cessive recurrence of oscillations of the discharge of a disturbing well
(curves 1 and 2). f, kHz; t, sec.
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 − z 
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 − 
∂ϕ
∂z



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 ,   ur = − 

1 + σ
E

 
∂
∂r

 [ϕ + zΦ] .
(3)

For the pressure p(r, t) the integral representation of Hankel will be written as

p (r, t) = ∫ 
0

∞

P (ξ, t) J0 (ξr) ξdξ . (4)

Now we can obtain the formula for the displacements of the free surface of a rock uz(z = 11) in the
form

uz (r, t, z = H) = 
4 (1 − σ2) H

E
 ∫ 
0

∞

dξξJ0 (ξr) exp (− Hξ) 
(1 + Hξ) P (ξ, t)

a + Hξf (ξ)
 , (5)

where

a = 
4 (1 − σ2) HEstr

Eh
 ;   f (ξ) = 1 − (1 + 2Hξ + 2H2ξ2) exp (− 2Hξ) ,

and for the deformations it will be written as

uzz (r, t, z = H) = − 
16σ (1 + σ) H2

E
 ∫ 
0

∞

dξ 
ξ3J0 (ξr) exp (− Hξ) P (ξ, t)

a + ξHf (ξ)
 . (6)

Next a certain form of the function P(ξ, 1) that corresponds to the specific problem must be substi-
tuted into (5) or (6). For this purpose we should find the pressure p(r, t), taking into account the deformations
occurring in the process of filtration.

With account for the compressibility of the stratum and disregarding the displacements of rocks in the
stratum’s plane, we can modify the classical equation of filtration in the form [5]

c 
∂p

∂t
 + d 

∂σz

∂t
 = 

k

µ
 ∇ 2p , (7)

where the parameters c and d are determined in terms of the elastic properties of the stratum and the fluid.
The form of the solution of (7) depends on the method of assignment of a load on the stratum [5].

Thus, for the case of a constant vertical load produced by the weight of the rock massif from the continuity
condition on an impermeable roof and bottom of the stratum it follows that ∂p ⁄ ∂t = ∂σz

 ⁄ ∂t and (7) is reduced
to the Fourier equation for the filtration pressure

∂p

∂t
 = χ∇ 2p , (8)

with the piezoconductivity of the stratum χ = k ⁄ [µ(c + d)].
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For cracked-porous media, following the Barenblatt model [6], we can write the filtration equation in
the case of this method of assignment of the load in the form

∂p

∂t
 = χ∇ 2 




p + τ 

∂p

∂t




 , (9)

where τ is the dimension constant of time characterizing the exchange of a liquid between blocks and cracks.
For the latter equation the function P(ξ, t) has the form

P (ξ, t) = 
χ

2πε
 

1

(1 + χτξ2)2 ∫ 
0

t

dt′q (t − t′) exp 



− 

t′χξ2

1 + χτξ2




 , (10)

and in assignment of the discharge in the disturbing well in the form of the periodic q(t) = q0 sin ωt function
with a period T = 2π ⁄ ω the function P(ξ, t) (for the times t >> T) will be written as

P (ξ, t) = 
q0

2πε
 

χ

(1 + χτξ 2)2 




b

ω2 + b2 sin ωt − 
ω cos ωt

ω2 + b2  + 
ω

ω2 + b2 exp (− bt)



 ,   b = 

χξ2

1 + χτξ2 . (11)

According to another method of assignment of the load, the changes in the threshold pressure in the
stratum are related to the displacements of the rock massif. In this case, (8) is reduced to the integro-differ-
ential equation

∂
∂t

 






p − α ∫ 

0

∞
ξ2F (ξ, t)

ξ + λ
 J0 (ξr) dξ







 = χ∇ 2p . (12)

Here F(ξ, t) = ∫ 
0

∞

yp(y, t)J0(ξy)dy and λ = a ⁄ H and α is the dimensionless coefficient determined by the com-

pressibilities of the rocks and the fluid.
We note that the integral in the brackets of expression (12) usually has no substantial effect [4];

therefore, in calculations we can use formulas (8)–(11).
Interpretation of the Experiment. In carrying out hydrodynamic experiments, periodic oscillations of

the discharges and pressures were produced by successively recurrent openings and closures of the disturbing
well in certain intervals of time. We note that, under actual conditions, the shape of the pulses of the dis-
charge can differ from a sinusoidal one and we can write it in the form of a superposition of functions and
harmonics of the corresponding Fourier expansion that approximate the discharge. Thus, for the situation in
question, the shape of discharge pulses for an individual period has the form of triangles (Fig. 2); the squares
show the corresponding pressures at the bottom of the disturbing well. Here, during the first half of the pe-
riod, there is a nonzero discharge and a pressure increase is observed, while in the second half of the period
the discharge is zero and the pressure decreases. As the harmonic propagates in the medium, pressures of
higher order decay more rapidly than pressures of lower order; therefore, the shape of pressure pulses will
change (the initial rectangles "degenerate" into sinusoids), which is shown in Fig. 2 as crosses for pressures
that are measured in the control well located at a distance of 98 m from the disturbing one. The form of the
occurring deformations recorded by the device at a distance of 150 m from the injecting well is shown as
circles (all the above quantities are dimensionless and are normalized to their maximum values).
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The deformations experimentally measured for the periods of oscillations of the discharge on the dis-
turbing well are shown in Fig. 3. The measurements were carried out at a point at a distance of 150 m from
the well. The lines show results of calculating from formula (6) using (8) and (10) with account for the actual
shape of pressure pulses that are shown in Fig. 2 as the triangles. In obtaining these solutions, we employed
the self-similar solution for pressure; this solution disregards the finite radius of the well, which turns out to
be justified in the situation in question. We also disregarded the effects that are caused by the pressure redis-
tribution between blocks and cracks, taking into account that the condition τ << T was fulfilled (see also [4]).
We took the following values of the parameters: Poisson coefficient σ = 0.23, Young modulus of the stratum
Estr = 0.81⋅104 MPa (it was used as the fitting parameter), E = 4⋅104 MPa, depth of occurrence H = 690 m,
and stratum thickness h = 11 m; according to the results of the hydrodynamic experiments, the calculated
value of the piezoconductivity was taken to be equal to χ = 0.65 m2/sec, q0

 ⁄ (2πε) = 1.70 MPa.
Quite a satisfactory agreement between theoretical curves and experimental points is obvious.
Conclusions. The theoretical approaches given in this work are suitable for description of lateral de-

formations occurring in nonstationary filtration in strata. These approaches can be used in investigations of
both porous media and cracked-porous media with different methods of assignment of a load on a stratum.
Within the framework of solution of applied problems, we can speak of the possibility of monitoring filtration
flows through creation of a surface network of sensors that record the displacements and deformations of
rocks.

NOTATION

h, stratum thickness, m; H, depth of occurrence of the stratum, m; r, distance from the well axis, m;
z, coordinate in a cylindrical coordinate system, m; t, time, sec; f, frequency of the resonant circuit of the
device, kHz; Estr, Young modulus of the stratum skeleton, Pa; E, Young modulus of the rocks, Pa; σ, Poisson
coefficient of the rocks; u, uz and ur, vector of lateral displacements and its components, m; uzz, lateral de-
formations; σz and τrz, components of the stress tensor, Pa; p(r, t), pressure, Pa; k, permeability of the stra-
tum, m2; µ, viscosity of the fluid, Pa⋅sec; χ, piezoconductivity of the stratum, m2/sec; ε, hydraulic
conductivity of the stratum, m3/(Pa⋅sec); q and q0, discharge and amplitude of oscillations of the discharge of
the well, m3/sec; T, period of oscillations of the discharge of the well, sec; ω, cyclic frequency of oscillations
of the discharge, rad/sec; τ, dimension constant of time in (9), sec; Pb(t), pressure at the bottom of the dis-

Fig. 2. Time changes of the discharge q(t) and the pressure Pb(t) in a
disturbing well, of the pressure Pc(t) in a control well, and of the defor-
mation uzz(t) that are recorded by the device.

Fig. 3. Comparison of the calculated (1) and experimental values of the
deformations for discharge oscillations with periods of 57,600 sec (2)
and 129,600 sec (3). t, sec.

1071



turbing well, Pa; Pc(t), pressure in the control well, Pa; J0, Bessel function; P(ξ, t), transform of pressure in
the Hankel representation, N; ξ, dimension variable of the inverse length in (4)–(6) and (10)–(12), m−1; a,
dimensionless parameter in (5) and (6); b, parameter in (10), sec−1; c and d, elastic parameters in (7), Pa−1; λ,
parameter in (12), m−1.
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